19 research outputs found

    Use of CNS medications and cognitive decline in the aged: a longitudinal population-based study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies have found associations between the use of central nervous system medication and the risk of cognitive decline in the aged. Our aim was to assess whether the use of a single central nervous system (CNS) medication and, on the other hand, the combined use of multiple CNS medications over time are related to the risk of cognitive decline in an older (≄ 65 yrs) population that is cognitively intact at baseline.</p> <p>Methods</p> <p>We conducted a longitudinal population-based study of cognitively intact older adults. The participants were 65 years old or older and had Mini-Mental State Examination (MMSE) sum scores of 24 points or higher. The study included a 7.6-year follow-up. The use of benzodiazepines and related drugs (BZDs), antipsychotics (APs), antidepressants (ADs), opioids (Ops), anticholinergics (AChs) and antiepileptics (AEs) was determined at baseline and after a 7.6-years of the follow-up period. Cognitive functioning was used as an outcome variable measured with MMSE at baseline and at the mean follow-up of 7.6 years. Control variables were adjusted with analyses of covariance.</p> <p>Results</p> <p>After adjusting for control variables, the use of Ops and the concomitant use of Ops and BZDs as well as the use of Ops and any CNS medication were associated with cognitive decline. The use of AChs was associated with decline in cognitive functioning only in men.</p> <p>Conclusions</p> <p>Of all the CNS medications analyzed in this study, the use of Ops may have the greatest effect on cognitive functioning in the ageing population. Due to small sample sizes these findings cannot be generalized to the unselected ageing population. More studies are needed concerning the long-term use of CNS medications, especially their concomitant use, and their potential cognitive effects.</p

    A double-blind, placebo-controlled investigation of the residual psychomotor and cognitive effects of zolpidem-MR in healthy elderly volunteers

    No full text
    AIM: To assess residual psychomotor and cognitive effects of a modified-release formulation of zolpidem (zolpidem-MR), developed to provide sustained hypnotic efficacy during the whole night, compared with placebo and flurazepam. METHODS: Twenty-four healthy elderly volunteers received four study treatments (zolpidem-MR 6.25 mg and 12.5 mg, placebo and flurazepam 30 mg) using a randomized, cross-over, double-blind design. Residual psychomotor and cognitive effects were assessed with a psychometric test battery. Quality of sleep and residual effects were evaluated subjectively with the Leeds Sleep Evaluation Questionnaire. RESULTS: Psychometric performance was significantly impaired with flurazepam but not with zolpidem-MR at either dose. Ease of falling asleep and sleep quality were significantly improved with both doses of zolpidem-MR and with flurazepam. Neither active drug modified perception of well-being on awakening. CONCLUSION: In elderly subjects, zolpidem-MR showed no residual functional impairment in psychometric or cognitive tests sensitive to flurazepam

    Distinct effects of IPSU and suvorexant on mouse sleep architecture

    Get PDF
    Dual orexin receptor (OXR) antagonists (DORAs) such as almorexant, SB-649868, suvorexant (MK-4305), and filorexant (MK-6096), have shown promise for the treatment of insomnias and sleep disorders. Whether antagonism of both OX1R and OX2R is necessary for sleep induction has been a matter of some debate. Experiments using knockout mice suggest that it may be sufficient to antagonize only OX2R. The recent identification of an orally bioavailable, brain penetrant OX2R preferring antagonist 2-((1H-Indol-3-yl)methyl)-9-(4-methoxypyrimidin-2-yl)-2,9-diazaspiro[5.5]undecan-1-one (IPSU) has allowed us to test whether selective antagonism of OX2R may also be a viable strategy for induction of sleep. We previously demonstrated that IPSU and suvorexant increase sleep when dosed during the mouse active phase (lights off); IPSU inducing sleep primarily by increasing NREM sleep, suvorexant primarily by increasing REM sleep. Here, our goal was to determine whether suvorexant and IPSU affect sleep architecture independently of overall sleep induction. We therefore tested suvorexant (25 mg/kg) and IPSU (50 mg/kg) in mice during the inactive phase (lights on) when sleep is naturally more prevalent and when orexin levels are normally low. Whereas IPSU was devoid of effects on the time spent in NREM or REM, suvorexant substantially disturbed the sleep architecture by selectively increasing REM during the first 4 h after dosing. At the doses tested, suvorexant significantly decreased wake only during the first hour and IPSU did not affect wake time. These data suggest that OX2R preferring antagonists may have a reduced tendency for perturbing NREM/REM architecture in comparison with DORAs. Whether this effect will prove to be a general feature of OX2R antagonists vs. DORAs remains to be see
    corecore